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Natural convection in vertical enclosures 
containing simultaneously fluid and porous layers 
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West Lafayette, IN 47907, USA 

(Received 5 September 1986 and in revised form 23 April 1987) 

A numerical and experimental study is reported of natural convection in a vertical 
rectangular fluid enclosure that is partially filled with a fluid-saturated porous 
medium. Velocities, stresses, temperatures, and heat fluxes are assumed to be 
continuous across the fluid/porous-medium interface, and the conservation equations 
for the fluid and the porous regions are combined into a single set of equations for 
numerical solution. Thermocouples as well as a Mach-Zehnder interferometer are 
used to measure temperature distributions and infer fluid flow patterns within the 
fluid and the porous medium. For various test cells, porous-layer configurations and 
fluid-solid combinations, the model predictions show excellent agreement with the 
experimental measurements. It is found that the intensity of natural convection is 
always much stronger in the fluid regions, while the amount of fluid penetrating into 
the porous medium increases with increasing Darcy and Rayleigh numbers. The 
degree of penetration of fluid into the porous medium depends strongly on the 
porous-layer geometry and is less for a horizontal porous layer occupying the lower 
half of the test cell. If penetration takes place, the flow patterns in the fluid regions 
are significantly altered and the streamlines show cusps at  the fluid/porous-medium 
interfaces. For a high effective-thermal-conductivity porous medium, natural 
convection in the medium is suppressed, while the isotherms bend sharply at the 
fluid/porous-medium interface. 

1. Introduction 
Natural-convection heat transfer and fluid flow in a system containing sim- 

ultaneously a fluid reservoir and a porous medium saturated with the same fluid is 
of great mathematical and practical interest. Applications include solidification of 
castings, crude-oil production, ground-water pollution, thermal insulation, geo- 
physical systems, etc. For example, if a porous insulation occupies only a small 
fraction of the space between two walls, the fluid flow and heat transfer can be 
significantly reduced because of the large frictional resistance offered by the porous 
insu1at)ion. Penetration of fluid into a porous medium is also important in a 
solidifying alloy casting. Because of the extended freezing temperature range of an 
alloy, a mushy zone might exist, consisting of a fine meshwork of dendrites growing 
into the melt. Fluid flow between this porous mushy zone and the pure melt region 
will eventually alter the chemical homogeneity and grain structure of the solidified 
casting. In addition, the problem is of fundamental interest from an experimental 
point of view. By observing the convection in the fluid region information can be 
deduced about the heat transfer and fluid flow in the porous region and between the 
two regions. The present study is concerned with natural convection in a two- 
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Configuration 1 
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FIGURE 1. Schematic, of the physical model and coordinate system. 

dimensional, rectangular fluid enclosure with the vertical walls held at different 
temperatures and the connecting horizontal walls considered adiabatic. '!%'he enclosure 
is partially filled with various vertical or horizontal layers of a porous material as 
shown in figure 1. 

Mathematically, the problem involves the coupling of the momentum equation for 
the fluid region (i.e. the Navier-Stokes equation) with the equation for the porous 
medium (typically some form of Darcy's law) through an appropriatc set of matching 
conditions at the fluid/porous-layer interface. Depending on the chosen form of the 
momenturn equation for the porous medium. the two sets of differential equations 
may be of different order, necessitating the use of empirical matching conditions. In 
the case where the flow in the porous medium is assumed to be governed by Darcy's 
law, Beavers & Joseph (1967) proposed the use of a 'slip-flow' matching condition 
with the slip velocity proportional to the shear rate at the interface. For a two- 
dimensional, orthogonal coordinate system (n,  t ) ,  where n and t are the coordinates 
normal and tangential to the fluid/porous-medium interface, respectively, these 
matching conditions can be written as 

un = u:, 

where U = ( U n ,  U t )  is the velocity vector in thc fluid region, while U,  = (U;. [ T i ) )  is 
the Darcian velocity vector in the porous medium (i.e. volume flow rate per unit 
cross-sectional area). In the above equations, K is the pcrmcability, ,u is the dynamic. 
viscosity of the fluid, and y is an empirical parameter characterizing the porous 
medium ; P and PD represent the local thermodynamic pressures in the fluid and the 
porous medium, respectively. Derjani, Taslim & Narusawa (1986) and Nield (1977, 
1983) have used Darcy's law together with the above matching conditions to study 
convective and thermal instabilities of superposed porous and fluid laycm heatetl 
from below. Masuoka (1974) has observed convective currents in a layer of fluid 
heated from below and divided by a horizontal porous wall. He has found that the 
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porous wall suppresses the onset of thermal instabilities, which has also been 
confirmed by an approximate analysis based on Darcy’s law. 

Neale & Nader (1974) argued that, at the interface, the tangential components of 
the velocity in the fluid ( U t )  and of the Darcian velocity in the porous medium ( U L )  
are actually equal and there exists no slip-flow. Owing to this no-slip condition, 
velocity gradients may be induced in the porous medium adjacent to  the interface, 
making Darcy’s law inapplicable. Hence, they proposed the use of the Brinkman- 
extended Darcy equations (Brinkman 1949) to account for the macroscopic viscous 
stress in the porous medium (as opposed to the viscous effects induced by the solid 
matrix and modelled by Darcy’s term). Furthermore, they suggested that, a t  the 
interface, the macroscopic viscous shear stress in the porous medium (modelled 
through Brinkman’s extension) is equal to the shear stress on the fluid side. 
Extending the arguments of Neale & Nader (1974) to two-dimensional flow, the 
matching conditions a t  the fluid/porous-layer interface can be expressed in general 

where the effective viscosity of the fluid saturated porous medium, peff, is, in general, 
not equal to the fluid viscosity p. For Poiseuille flow in a channel with a permeable 
wall it has been recognized (Neale & Nader 1974) that the two approaches, the 
‘slip-flow’ and the no-slip matching conditions, yield identical end results for y = 
(peff/p)a. There have been many attempts to derive expressions for the viscosity ratio 
as a function of the properties of the porous medium (Lundgren 1972 ; Koplik, Levine 
& Zee 1983; Kim & Russel 1985). Most analyses predict the effective viscosity to be 
greater than the fluid viscosity (Kim & Russel 1985), but i t  has been found that 
taking peff = p provides good agreement with experimental data (Neale & Nader 
1974). 

Somerton & Catton (1982) and Catton (1985) have used the Brinkman-extended 
Darcy equations together with the Neale & Nader (1974) matching conditions to 
investigate the stability and heat transfer in superposed horizontal porous and fluid 
layers with internal heat generation in the porous medium and heating from below. 
They have predicted that the fluid layer above the porous bed is destabilizing and 
can induce motion in the porous bed. Nishimura et al. (1986) have studied natural 
convection in a vertical enclosure heated and cooled from the sides and horizontally 
divided into fluid and porous regions. The Navier-Stokes equation for the fluid layer 
and the Brinkman-extended Darcy equation for the porous layer have been 
matched explicitly by assuming continuity of velocity, shear stress and pressure a t  
the interface. Their numerical results, obtained utilizing a finite-element method, 
have been found to be in good agreement with experiments conducted using silicone 
oil and glass beads. Their experiments have been limited, however, to conditions in 
which the heat transfer in the porous region is dominated by conduction. 

Beckermann, Ramadhyani & Viskanta (1986~)  have performed a numerical and 
experimental study of natural convection between vertical fluid and porous layers 
inside a vertical rectangular enclosure. By assuming the validity of the Neale & 
Nader (1974) matching conditions, they have combined the governing equations for 
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the fluid and porous layers into one set of equations valid for the entire domain. Since 
their numerical algorithm ensures continuity of the velocities and stresses at every 
point in the computational domain, the matching conditions, expressed in ( 2 ) ,  are 
satisfied automatically. The numerical results have shown good agreement with flow 
visualization and temperature measurements. They have concluded that for a 
vertical porous layer occupying half of the test cell, the degree of penetration of fluid 
into the porous layer depends, roughly, on the product of the Rayleigh and Darcy 
numbers, which should be greater than about 50 for penetration to be significant. 
Aryuis & Caltagirone (1984) and Arquis, Caltagirone & Langlais (1986) have used an 
approach similar to that of Beckermann et al. ( 1 9 8 6 ~ )  to study natural convection in 
a cavity containing various vertical fluid and porous layers. By considering the 
porous medium as a ‘special’ fluid, only one set of conservation equations has been 
solved for the entire domain. The transition from the fluid to the porous region has 
been achieved by a continuous variation in space of the permeability and other 
‘structural’ parameters. The few experiments performed by Arquis et al. (1986) 
reveal good agreement between measured and numerically predicted overall heat 
transfer rates across the cavity. 

There have been numerous studies of natural convection in vertical and horizontal 
enclosures containing various layers of porous media having different permeabilities 
(Poulikakos & Bejan 1983; McKibbin & O’Sullivan 1981; Rana, Horne & Cheng 
1979; Reda 1985; Gjerde & Tyvand 1984; Somerton & Goff 1985). These studies are 
of related interest because a layer of high permeability is expected to have a similar 
effect on the fluid flow in the enclosure as a pure fluid layer. In fact, most 
investigations show that the flow takes place primarily in the layers of higher 
permeability, i.e. the flow is channelled. I n  addition, the discontinuities in the 
permeability (and the effective thermal conductivity) between adjacent porous 
layers cause cusps in both streamline and isotherm patterns. 

The foregoing discussion illustrates that little is known about natural-convection 
fluid flow and heat transfer in enclosures containing simultaneously fluid and porous 
layers. Through combined experimental and analytical work, the present study is 
aimed a t  investigating the global physical phenomena occurring in such systems. In  
order to study the effect of the configuration of the fluid and porous layers on the 
natural-convection patterns. various horizontal and vertical layers of a porous 
medium are constructed within a fluid-filled vertical enclosure (see figure 1 ) .  The 
influence of the material properties is investigated by employing different 
combinations of porous media (glass and aluminium beads) and fluids (water and 
glycerin). In the experiments, a Mach-Zehnder interferometer is used to obtain a 
complete record of the temperature field in the fluid regions. It is also utilized as a 
flow-visualization device to determine the flow patterns in the fluid regions as well 
as the extent of penetration of fluid into the porous layer. Numerical simulations are 
performed to supplement the experimental results. The flow and heat transfer are 
modelled by combining the governing equations for the porous and fluid regions into 
a single set of equations valid for the entire domain. This is accomplished by 
assuming the validity of the Neale & Nader (1974) interface conditions (see (2)) for 
the velocities and stresses as well as by matching the temperatures and heat fluxes 
a t  the interface. The combined equations contain a binary ‘existence ’ parameter 
through which the transition from one region into another is achieved. The numerical 
results are verified by comparing them to temperature measurements taken in both 
the fluid and the porous layer. The ability of the present model to simulate natural 
convection in enclosures partially filled with a porous medium is discussed. However, 
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in view of the large number of governing parameters, no attempt is made to present 
a complete parametric study. 

2. Analysis 
2.1. Model equations 

The three physical situations considered in the present study are shown in figure 1.  
In all cases, the vertical walls of the enclosure are of height H and are held a t  the 
temperatures TH and Tc. The connecting horizontal walls of length L are considered 
adiabatic. The porous layers within the two-dimensional cavity are of thicknesses S. 
In  case 1 ,  the porous layer extends from the (right) cold wall, while in case 2 the layer 
is centred on the vertical midplane of the enclosure and is bounded by two vertical 
fluid layers. The porous layer in case 3 is horizontal and covers the entire bottom wall 
of the cavity. 

I n  the analysis, the porous medium is considered to  be homogeneous and isotropic. 
The fluid within the porous medium saturates the solid matrix and both are in local 
thermodynamic equilibrium. The flow is assumed to be steady, laminar, in- 
compressible, and two-dimensional. The thermophysical properties of the fluid and 
the effective properties of the porous medium are assumed constant, except for the 
density in the buoyancy term in the momentum equations. With the foregoing 
assumptions, the governing equations for the fluid are 

v.  u= 0 ,  (3) 

where p,  c p ,  k: and /3 are the density, specific heat, thermal conductivity and isobaric 
coefficient of thermal expansion of the fluid. In  the above equations, U = ( U ,  V ) ,  T 
and P are the velocity, temperature and pressure in the fluid, respectively. 

The conservation equations for the porous layer are based on a non-Darcian model, 
incorporating the Brinkman and Forchheimer extensions. The importance of these 
extensions is discussed in Beckermann, Viskanta & Ramadhyani (1986 b).  Their 
computations show that for the conditions of some of the present experiments (see 
table l ) ,  Brinkman’s extension is small compared to the Darcy term. However, 
Brinkman’s extension has been included in all the computations to ensure continuity 
of the velocities and stresses at the fluid/porous-medium interface. Forchheimer’s 
extension (Forchheimer 1901) serves to model the inertia and, hence, Prandtl- 
number effects on the flow in the porous medium. Although the effect of 
Forchheimer’s extension is significant mainly a t  low Prandtl numbers, it has been 
utilized in all the computations of the present study. I t  should be be noted that both 
extensions must be included simultaneously for a high-permeability porous medium 
(i.e. a high Darcy number) (Beckermann et al. 19863). In  terms of the (superficial) 
Darcian velocity, UD = (UD, VD), the governing equations for the porous medium can 
be written as 

v.  u, = 0 ,  (6) 

pcP(uD*VT) = V. (ke,, V T )  > ( 8 )  

where peff and keff are the effective viscosity and thermal conductivity of the porous 
medium, respectively, while C and K are the inertia coefficient and the permeability. 
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The value of the permeability K can be determined from the Kozeny-Carman 
equation for packed beds of beads of diameter d, and porosity (i.e. liquid fraction) 

d;  2 
K =  

175(1 -c)~' 

According to  Ergun (1952), the inertia coefficient C can be calculated from the 
following empirical formula : 

(10) Kt - e3d, ' 

In  addition, models for the effective properties (,ueff and L,,,) of the porous medium 
are needed. As a first approximation and owing to lack of conclusive information, 
peff is taken equal to  the fluid viscosity p in the present study. For a large variety of 
porous matrices (including glass and aluminium beads) and fluids, D. Lindemann 
(1986, private communication) has found best agreement between measured and 
calculated values of the (stagnant) effective thermal conductivity using the empirical 
relationship (Combarnous & Bories 1975) 

C - 1.75(1-e) - 

k,,, = k k p ,  (11) 

where k, is the thermal conductivity of the solid matrix (i.e. beads). Equation (11) 
is utilized in all calculations of the present study. Because of the relatively small 
velocities encountered in the present experiments, thermal dispersion effects can 
safely be neglected. 

2 .2 .  Combined equations 
The conservation equations for the fluid and the porous regions must be coupled by 
an appropriate set of matching conditions a t  the fluid/porous-medium interface. 
According to the discussion presented in $ 1 ,  the matching conditions for the 
momentum equations are given by (2). The energy equations are coupled by the 
conditions of continuity of temperature and heat flux (Beckermann et at. 1 9 8 6 ~ ) .  
Because the velocities, stresses, temperatures and heat fluxes are continuous across 
the fluid/porous-medium interface, the fluid and the porous regions can be treated 
as a single (continuous) domain governed by one set of conservation equations. In  
writing one set of equations valid for the entire domain, the different forms of the 
conservation equations for the fluid and the porous regions (refer to the previous 
section) must, however, be accommodated. This can easily be accomplished by 
introducing the following binary parameter : 

1 if in porous medium, 
0 if in fluid. 

The governing equations for the fluid and the porous medium can now be combined 
into one set of conservation equations. In  dimensionless form, we have 

v - u  = 0 ,  (13) 

= -Vp+PrV2u+RaPrOe,-X 

u . V O = ( X , ( R ~ - ~ ) + ~ )  V 2 0 ,  (15) 

where u represents the Darcian velocity on the porous medium side and the true fluid 
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velocity on the fluid side. In the above equations, the dimensionless variables are 
defined as 

where a = k / (pcp ) .  Note that the governing equations are non-dimensionalized using 
the same scales for the variables in the fluid and porous regions. This procedure 
might result in physically unrealistic scales for one of the regions, but it greatly 
simplifies the writing of the combined equations. The dimensionless parameters in 
(13)-(15) are defined as 

Ra = pgp(TH-Tc)  L3 Rayleigh number, 
ru" 

Darcy number, 
K 

D a = -  
L2 

Pr = - C P  ru Prandtl number, 
k 

R, = ke,, thermal-conductivity ratio. 

By combining the conservation equations as suggested, the matching conditions at  
the fluid/porous-medium interface are satisfied automatically. The boundary 
conditions for the combined equations are given in dimensionless form as 

@ = I ,  u = O  a t [ = O ,  

@ = O ,  u = O  a t [ = l ,  

= 0 ,  u = O ,  a t q = O a n d A ,  O < [ < l ,  
ao - 
av 

where A = H / L  is the aspect ratio. 

2.3. Numerical procedure 

The combined conservation equations (13)-( 15) were solved numerically utilizing the 
iterative SIMPLER algorithm (Patankar 1980). This algorithm is based on a control- 
volume formulation which ensures continuity of the mass, momentum and heat 
fluxes across the control surfaces and, thus, the fluid/porous-medium interface. The 
harmonic mean formulation adopted for the interface diffusion coefficients between 
two control volumes yields physically realistic results for abrupt changes in these 
coefficients (for example, if R, =+ 1) without requiring an excessively fine grid in the 
neighbourhood of the fluid/porous-medium interface. 

The mesh size required for sufficient numerical accuracy depended mainly on the 
Rayleigh ( R a )  and Darcy (Da)  numbers. A grid of 26 x 26 nodal points was utilized 
in the simulations of the experiments (refer to $4). Calculations performed on a 
50x50 grid (Beckermann et al. 1986a) did not significantly improve the accuracy 
of the numerical results. The nodal points were uniformly distributed in the 
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7 - direction, while the distribution along the f ;  - dircction was slightly skewed to 
have a greater concentration of points near the hot and cold vertical boundaries. The 
iterations were terminated when the dependent variables agreed to four significant 
digits a t  each nodal point. Convergence of the numerical solutions was also checked 
by performing overall mass and energy balances. The calculations wcre performed on 
a CYBER 205 computer and required less than 500 CPC' swontls. Extensive tests of 
the accuracy of the numerical algorithm were performed for the limiting cases of fully 
fluid and fully porous enclosures (Reckermann d al. 1 9 8 6 ~ )  and good agreement with 
results reported in the literature was found. 

3. Experimental conditions and measurements 
Experiments were performed in two different tcst cells of square cross-section. Thc 

smaller test cell, which was used for the interferometric studies, had inside 
dimensions of 4.76 ern in height and width and 3.81 cm in depth. The horizontal top 
and bottom walls were constructed of phenolic plates, while the vertical front and 
back walls were made of 6.35 mm thick high-quality optical glass. The larger test cell 
was utilized for the temperature measurements and had inside dimensions of 
11.43 cm in height and width and 3.97 ern in depth. The horizontal top and bottom 
walls and the vertical front and back walls were made of acrylic plates which were 
held in place by a stainless-steel frame. I n  both test cells, the two vertical sidewalls, 
which served as the heat source/ sink, were multipass heat exchangers machined out 
of a copper plate. By circulating a mixture of alcohol and water from two constant- 
temperature baths (Haake A82) through the two heat exchangers, the vertical 
sidewalls could be maintained at different temperatures. The temperatures of each 
copper heat exchanger were measured with three thermocouples epoxied separately 
into small-diameter holes which were drilled close to the surface of the copper plate 
facing the fluid. In  all experiments, the temperatures of the heat exchangers were 
uniform to within 3% of the total temperature difference across the test cell. Both 
test cells were insulated with 5.09 cm thick Styrofoam. The insulation covering the 
front and back walls of the smaller test cell could be removed while performing the 
interferometric measurements. 

The temperature distribution in the larger test cell was measured using a movable 
thermocouple probe sheathed in a 1.27 mm OD stainless-steel tube. The probe was 
mounted on an x 3  translation stage allowing the position of the thermocouple bead 
in the test cell to be determined to within 0.5 mm. Temperatures were measured 
along the vertical centreplane of the test cell. After each movement of the 
thermocouple probe, the system was allowed to  reach steady state again. Although 
the structure of the porous medium was slightly disturbed owing to the displacement 
of a bead by the probe, i t  is felt that the resulting error in the temperature 
measurements within the porous medium was relatively small considering the small 
diameter of the probe compared to the size of the porous layers (and the test) cel1). 
All thermocouples were calibrated with an accuracy of k0.l  "C. 

Qualitative temperature distributions and flow-visualization measurements in the 
smaller test cell were obtained using a Mach-Zehnder interferometer with 10 ern 
diameter optics. The light source consisted of a collimated beam from a helium-neon 
laser ( A  = 632.8 mm). The beam was split into two components, one of which passed 
through the test cell and was subsequently recombined with the second component, 
which moved along a reference path. The interference fringe pattern resulting from 
the recombined beams was imaged on a white glass plate and photographed using a 
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high-sensitivity film (Kodak Tri X-Pan). Owing to the blocking of the test beam by 
the porous medium, it was not possible to perform interferometric measurements 
within the porous medium. When viewing the interferograms, several extraneous 
features should be ignored. Owing to  the relatively large test-cell depth, the fringe 
density in certain regions of the interference pattern is very high, making a 
quantitative interpretation of the interferograms difficult. In  addition, the test beam 
might be slightly refracted due to the gradients of the refractive index in the fluid. 
This problem is especially serious in the thermal boundary layers along the vertical 
hot and cold sidewalls resulting in a distortion of the images of the test-cell 
boundaries. The problems, however, do not restrict, the qualitative interpretation of 
the interferograms presented in $4. 

The porous media consisted of random parkings of spherical glass or aluminium 
beads ranging from 1.6 mm to 6.35 mm in diameter (refer to table 1). The 
thermophysical properties corresponding to the chemical composition of the beads 
are known (Weaver 1985). In  configurations 1 and 2 (refer to figure 1) the vertical 
layers of beads were held in place by fine fibreglass (in case of the glass beads) or 
aluminium (in case of the aluminium beads) screens which were supported by small- 
diameter glass or aluminium rods. The porosity of the screen was much higher than 
the porosity of the beads, while the mesh size was only slightly smaller than the 
diameter of the beads. It is believed that the screens had a negligible influence on the 
flow and heat transfer between the fluid and the porous medium. In configuration 3, 
the beads were simply dropped into the test cell to form a horizontal layer of the 
desired height. The porosity (i.e. liquid fraction) of the porous layers was measured 
separately for each combination of beads and test cells. For the large-diameter beads 
and the small test cell, the increase in porosity near the walls was more significant, 
resulting in a higher value of the average porosity. 

The fluids used were once-distilled, degasified water for the smaller test cell (for the 
interferometric studies) and chemical-grade glycerin for the larger test cell. With the 
various combinations of fluids, beads, porous-layer configurations, and test cells, it 
was possible to cover a relatively broad range of the relevant dimensionless 
parameters. The experimental conditions together with the values of the dim- 
ensionless parameters are summarized in table 1. All fluid properties were evaluated 
at a temperature of +(TH + Tc). 

Before each experiment, the screens were inserted into the test ( d l  a t  the desired 
position and the resulting layer was filled with the beads. Then, the fluid was 
carcfully siphoned into the test cell to ensure that no air was trapped in the matrix 
and to prevent air from mixing with the fluid. After switching on the constant- 
temperature baths, the system was allowed to reach steady state for a t  least 12 
hours. The temperatures of the heat exchangers were monitored continuously to  
ensure that the desired temperature levels were maintained. 

4. Results and discussion 
4.1. Comparison of measured and predicted temperatures 

In  order to compare quantitatively measured and predicted temperatures, six 
experiments were performed in the larger test cell using glycerin as the fluid. For each 
configuration, two different porous media were employed : 6.0 mm diameter glass 
beads and 6.35 mm diameter aluminium beads (refer to table 1, experiments, 1-6). 
In  these experiments, the temperature difference between the vertical hot and cold 
walls was kept a t  10°C. As may be seen from table 1, the Rayleigh, Darcy, and 
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FIGURE 2.  Experimental and predicted temperature profiles for configuration 1 : (a )  Experiment 1 ; 
( b )  Experiment 2 .  

Prandtl numbers were approximately constant for experiments 1-6, while the 
thermal conductivity ratio R, for the aluminium beads was much greater than for 
the glass beads. Temperature measurements were taken at three different heights 
from the bottom of the larger test cell. The results of these experiments, together 
with the pertinent numerical predictions are shown in figures 2 4 .  

From both the measured and predicted temperatures, it can be seen that, for all 
three configurations of the porous layer and both glass and aluminium beads, the 
temperature profiles inside the porous layers are basically straight lines, indicating 
that heat transfer is mainly by conduction and very little fluid penetrates into the 
porous layers. In  the case of the glass beads, the slopes of these lines are larger than 
for the aluminium beads. This is expected, since the aluminium beads offer a much 
smaller thermal resistance, resulting in a smaller temperature drop across the porous 
layers. On the other hand, the temperature profiles in the fluid layers indicate strong 
thermal convection. In  figure 2 (configuration l) ,  there are thermal boundary layers 
along the heated wall and the fluid/porous-layer interface, while the core region of 
the fluid layer is thermally stratified. This behaviour is less pronounced for 
configuration 2 (figure 3) ,  where the vertical porous layer divides the enclosure into 
two fluid layers. Here, the temperature profiles in the core regions of the fluid layers 
show that some heat is conducted directly across the fluid layers, i.e. the core is not 
thermally stratified. This is expected because of the larger aspect ratio of each 
individual fluid layer when compared to the fluid layer of configuration 1 .  As shown 
in figure 4, the temperature profiles in the fluid layer of configuration 3 indicate, 
again, strong natural convection with a thermally stratified core region. The 
temperature profile a t  4 = 0.554 is taken directly above the porous layer. It shows 
that there exists strong cross-flow along the fluid/porous-layer interface. The 
differences between the heat transfer patterns in the fluid layers of experiments 1 and 
2 (figures 2a and b)  as well as 3 and 4 (figures 3a and 6 )  are mainly due to the different 
temperature drops across the porous layers (because of the large differences in the 
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FIGURE 3. Experimental and predicted temperature profiles for configuration 2 : (a )  Experiment 3 ; 
( b )  Experiment 4. 
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FIGURE 4. Experimental and predicted temperature profiles for cwnfiguration 3 : ( a )  Experiment 5 ; 
( b )  Experiment 6. 

thermal conductivity ratios). In  addition, the discontinuities in the slopes of the 
temperature profiles a t  the fluid/porous-layer interfaces are more pronounced in the 
case of the aluminium beads. On the other hand, in configuration 3 (figures 4a and 
6 )  the temperature profiles in both the fluid and porous layers are very similar for the 
glass and aluminium beads. In both cases, the porous and the fluid layers extend 
from the hot to the cold wall, resulting in the same total temperature drop across the 
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layers regardless of the porous material, the only difference being in the relative 
amounts of heat conducted through the porous layers. 

The agreement between the measured and predicted temperatures is, in most 
cases, better than 5% of the total temperature diffierence across the test cell. The 
differences in the temperature distributions between the various configurations and 
porous materials are well predicted by the numerical model. Some of the discrepancies 
are possibly due to inaccuracies in determining the exact position of the movable 
thermocouple probe (k0.5 mm), especially within the porous medium. In addition, 
non-uniformities in the porosity in the vicinity of the walls are expected to produce 
channelling of the flow along the walls which is not modelled in the present analysis. 
This can be seen, for example, in the measured temperature profiles a t  7 = 0.204 in 
configuration 3 (figures 4a and b) .  The temperatures near the hot and cold walls 
deviate slightly from the predicted pure-conduction pattern indicating that adjacent 
to the walls bounding the porous layer Some heat is transferred convectivcly. Some 
experimental error might also be due to the non-uniformities in the hot and cold wall 
temperatures (less than 3 YO) and imperfect adiabatic boundary conditions at  the top 
and bottom walls. A possible error in the predicted results might be due to the 
uncertainty in the calculated effective thermal conductivity of the porous media 
(equation (11)). This problem is especially serious in the case of the aluminium beads, 
where small changes in the porosity produce large differences in the effective thermal 
conductivity. By comparing the slopes of the measured and predicted temperature 
profiles in the porous layers, it can be seen, however, that the calculated effective 
thermal conductivities are in reasonable agreement with the ones that can be inferred 
from the measurements. Finally, some inaccuracies in the predicted results may be 
associated with the temperature dependency of the thermophysical properties. In  
particular, the dynamic viscosity of glycerin varies by more than a factor of two over 
the temperature range of the present experiments (i.e. 10 "C). In  view of the above 
uncertainties in the measurements and predictions, the agreement between the 
results can be considered very good. 

4.2. Interferometric results 

Interferometric measurements were performed using the smaller test cell with water 
as the fluid. For each configuration of the porous layer (refer to  figure l ) ,  four 
different porous media were utilized. 1.5 em and 6.0 mm diameter glass beads as well 
as 3.16 mm and 6.35 mm diameter aluminium beads (see table 1 ,  experiments 7-18). 
Since the temperature difference between the hot and cold walls was maintained a t  
2 O C ,  the Rayleigh (and Prandtl) number are the same for all experiments. On the 
other hand, owing to the different diameters of the beads, the Darcy number changes 
from 7.24 x lo-' (for the small glass beads) to 1.53 x (for the large aluminium 
beads). Again, the thermal-conductivity ratio differs greatly between the glass and 
the aluminium beads. Each experiment was supplemented by numerical simulations 
using the dimensionless parameters given in table 1. The interferometric results, 
together with the predicted isotherms and streamlines, are shown for each experiment 
in figures 5-16. 

Since the index of refraction of water varies approximately linearly with 
temperature, the distances between the fringes (dark lines) on the interferograms 
(figures 5a-16a) correspond to  about equal (and constant) temperature differences in 
the fluid. Also, note that the interferograms represent averages along the test beam 
over the depth of the test cell. Although no attempt was made to  match the predicted 
isotherms (figures 5b-16 b) with the isotherms that correspond to the interference 
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(b )  

FIGURE 5 .  Experimental and predicted results for configuration 1, experiment 7 : (a )  photograph 
of interference fringe patterns ; (6) predicted isotherms (equal increments) ; ( c )  predicted streamlines 
(equal increments). 

fringes in the interferograms, a qualitative comparison of the measured and 
predicted isotherms shows that the present model predicts well the temperature 
distributions in the fluid layers for all the experiments. The predicted slopes and the 
spacings of the isotherms are in excellent agreement with the interferometric results. 
Any differences between the predicted and measured isotherms can, again, be 
attributed to  the uncertainties in the experiments and the model as discussed in $4.1 
(i.e. channelling of the flow, effective thermal conductivity, imperfect constant 
temperature and adiabatic boundary conditions, etc.). Since the predicted and 
interferometric results are in such good agreement, the following discussion of the 
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FIGURE 6. Experimental and predicted results for configuration 1, experiment 8 : (a )  photographs 
of interference fringe patterns : ( b )  predicted isotherms (equal increments) ; (c) predicted streamlines 
(equal increments). 

physical phenomena occurring in the experiments applies to both the numerical and 
measured results and no reference is made to the specific method of obtaining them. 
In addition, owing to the strong coupling of the heat transfer and fluid flow in the 
present natural-convection system, i t  may be inferred that the predicted streamlines 
(figures 5c-16c) closely match the flow patterns in the experiments. This has also 
been confirmed through flow-visualization experiments reported in another study 
(Beckermann et ul. 1 9 8 6 ~ ) .  
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(b) 

0 .  

FIGURE 7. Experimental and predicted results for configuration 1, experiment 9:  ( a )  photograph 
of interference fringe patterns ; (b )  predicted isotherms (equal increments) ; (c) predicted streamlines 
(equal increments). 

ConJiguration 1 

Shown in figures 5-8 are the results for configuration 1 where a vertical porous 
layer occupies one half of the test cell. In  the cases of the small glass and aluminium 
beads (figures 5 and 7 respectively), the flow is almost completely confined to  the 
fluid layer and is not able to penetrate into the porous layer. A boundary layer exists 
at the fluid/porous-layer interface. The heat transfer in the porous layer is mainly by 
conduction, as can be seen from the vertical and equally spaced isotherms. In the 
fluid layer, the flow and heat transfer is similar to  natural convection in an enclosure 
of the same aspect ratio as the fluid layer. I n  the experiment with the small glass 
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(b) 

FIGURE 8. hxperimental and predicted results for configuration 1 ,  experiment 10 : (a )  photograph 
of interference fringe patterns ; ( b )  predicted isotherms (equal increments) ; ( c )  predicted streamlines 
(equal increments). 

beads, almost 90 % of the total temperature drop across the enclosure takes place in 
the porous layer, while for the small aluminium beads the porous layer offers very 
little thermal resistance to heat transfer and most of the temperature drop takes 
place in the fluid layer. 

On the other hand, in the case of the large glass beads (figure 6), the porous layer 
offers much less resistance to the flow and natural convection takes place in the entire 
cavity. The streamlines show sharp changes in slope a t  the fluid/porous-layer 
interface. When the flow enters the porous layer a t  the upper region gf the test cell, 
the streamlines bend upwards. Owing to the strong downflow along the fluid/porous- 
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FIGURE 9. Experimental and predicted results for configuration 2 ,  experiment 1 1  : (a )  photograph 
of interference fringe patt,erns ; ( b )  predicted isotherms (equal increments) ; (e) predicted streamlines 
(equal increments). 

layer interface, the streamlines bend downwards when the flow leavm the porous 
region. The above observations indicate that the porous matrix exerts a strong 
influence on the velocity component parallel to the interface (resulting in a high 
velocity gradient on t,he fluid side), while the normal velocity component is relatively 
unaffected. Both velocity components are actually continuous across the fluid/ 
porous-layer interface. The centre about which the flow circulates is moved towards 
the lower left corner of the fluid layer (for natural convection in a vertical cavity 
filled with a homogeneous medium the eddy centre lies a t  the middle of the cavity). 
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FIGURE 10. Experimental and predicted results for configuration 2, experiment 12 : ( a )  photograph 
of interference fringe patterns ; (0) predicted isotherms (equal increments) ; (c) predicted streamlines 
(equal increments). 

The isotherms in the porous layer are more horizontal, indicating that the 
penetrating fluid causes the heat to be transferred convectively . 

The results shown in figure 8 are particularly interesting. Although the 
permeability (and Darcy number) of the porous layer in the case of the large 
aluminium beads is greater than for the large glass beads, much less fluid penetrates 
into the porous layer and, similar to  the small aluminium beads, most of the flow and 
temperature drop takes place in the fluid layer. This can be explained by the fact that 
owing to the high effective thermal conductivity of the porous layer, the heat is 
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(b) 

FIGURE 11. Experimental and predicted results for configuration 2 ,  experiment 13 : (a )  photograph 
of interference fringe patterns ; (6) predicted isotherms (equal increments) ; (c) predicted streamlines 
(equal increments). 

transferred more effectively by conduction than by convection. I n  other words, 
temperature differences in the fluid within the porous layer are equalized by heat 
conduction through the solid matrix (i.e. the aluminium beads). Hence, the fluid 
becomes almost isothermal and natural convection is suppressed. It should also be 
noted that in the experiments with the aluminium beads, the fluid/porous-layer 
interface is not completely isothermal and the thermal-boundary-layer thickness 
(which can be inferred from the spacing of the isotherms) along the interface is larger 
than the one along the hot wall of the fluid layer. In  addition, the isotherms show 
large discontinuities in slope a t  the fluid/porous-layer interface, which is due to the 
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FIGURE 12. Experimental and predicted results for configuration 2, experiment 14 : (a )  photograph 
of interference fringe patterns ; ( b )  predicted isotherms (equal increments) ; (c) predicted streamlines 
(equal increments). 

high value of the effective thermal conductivity of the porous layer when compared 
to the thermal conductivity of the fluid. 

ConJiguration 2 

The results for configuration 2 are presented in figures 9-12. Here, the vertical 
porous layer occupies one-third of the test cell and is bounded by two vertical fluid 
layers of equal size. In general, the discussion about the heat transfer and fluid flow 
patterns in configuration 1 also applies to this configuration. Again, in the cases of 
the small glass and aluminium beads (figures 9 and 11 respectively) the flow cannot 
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(b) 

FIGURE 13. Experimental and predicted results for configuration 3; experiment 15 : (a )  photograph 
of interference fringe patterns ; (6) predicted isotherms (equal increments) ; ( c )  predict,ed streamlines 
(equal inerements). 

penetrate through the porous layer and is confined to the fluid layers. In  the case of 
the large glass beads (figure 10) natural convection takes place in the entire cavity, 
but with the large aluminium beads (figure 12) there is very little flow in the porous 
layer. In  all experiments of configuration 2, there are two eddies in the test cell, the 
centre of each being in the fluid layers. In  the case of the large glass beads, where a 
considerable amount of fluid flows through the porous layer, the eddy centres are 
moved towards the lower and upper regions of the left and right fluid layers 
respectively, while a stagnant region exists in the centre of the porous layer. 

As in configuration 1, the porous layer in the experiment with the small glass beads 
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FIGITRE 14. Experimental and predicted results for configuration 3, experiment 16.  (a )  photograph 
of interference fringe patterns : ( b )  predicted isotherms (equal increments) ; (c) predicted streamlines 
(equal increments). 

offers a large thermal resistance to the heat transfer. Owing to the lasge temperature 
drop in this porous layer (relative to the total temperature drop across the test cell), 
natural convection in the fluid layers is weaker than in the experiments with the 
aluminium beads. In both experiments with the glass beads, the upper left and the 
lower right corners of the test cell are fairly isothermal, indicating that the fluid has 
reached the same temperature as the hot (left) and cold (right) walls. In the 
experiments with the aduminium beads, the isotherms in the porous layer are straight 
lines, except in the upper and lower parts where some convection takes place. These 
isotherms are almost horizontal, showing that heat is conducted from the top to the 
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(b) 

FIGURE 15. Experimental and predicted results for configuration 3, experiment 17 : ( a )  photograph 
of interference fringe patterns ; (6) predicted isotherms (equal increments) ; (c) predicted streamlines 
(equal increments). 

bottom region of the porous layer, rather than directly from the left (hot) to the right 
(cold) side of the test cell. Obviously, this behaviour is induced by the natural- 
convection patterns in the neighbouring fluid layers, which tend to convect heat 
downwards and upwards along the left and right fluid/porous-layer interfaces 
respectively. 

Conjquration 3 

For the case where a horizontal porous layer occupies the lower half of the test cell 
(configuration 3), the results are presented in figures 13-16. From the streamlines, 
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FIGURE 16. Experimental and predicted results for configuration 3, experiment 18 : (a )  photograph 
of interference fringe patterns ; ( b )  predicted isotherms (equal increments) ; (c) predicted streamlines 
(equal increments). 

shown in figures 13(c)-16(c), it can be seen that in all experiments there is very little 
penetration of fluid into the porous layer, when compared to configurations 1 and 2 .  
In  other words, the streamline patterns are very similar to the ones that would be 
expected in an enclosure of the same aspect ratio as the fluid layer. In  the 
experiments with the aluminium beads (figures 15 and 16), the centres of the 
circulation patterns are slightly moved towards the hot (left) wall of the enclosure, 
which can be attributed to strong heat conduction in the porous layer acting as the 
lower ‘wall ’ of the fluid layer. The comparatively small extent of penetration of fluid 
into the porous layers in configuration 3 can be explained by the fact that the fluid 
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can convect heat from the hot to the cold wall without having to flow through a 
porous medium. In addition, the path of fluid flowing through the porous medium 
from the cold to the hot wall is longer than the paths in the cases of the vertical 
porous layers. Hence, fluid penetrating into the porous layer would experience a 
larger resistance and tends to ‘avoid’ the porous layer completely. 

The isotherms in the porous layers of the experiments with the aluminium beads 
(figures 15b and 16b) are vertical and equally spaced, indicating that hcat is 
transferred by conduction directly from the hot to the cold wall. Even though strong 
natural convection exists in the adjoining fluid layer, the isotherms close to the fluid/ 
porous-layer interface are not distorted. On the other hand, the isotherms in the 
porous layers of the experiments with thc glass beads (figures 1 3 h  and 146) are highly 
curved and the isotherms in the fluid layer merge more gradually into the isotherms 
of the porous layer. Since this distortion also exists in the case of the small glass 
beads, it can be concluded that the curvature of the isotherms in the porous layer is 
not primarily due to penetration of fluid into the porous layer, but is also caused by 
natural convection on thc fluid side of the fluidlporous-layer interface.This coupling 
of the isotherm patterns in the two layers is more pronounced in the experiments 
with the glass beads, because the thermal-conductivity ratio K, is close to unity, 
causing the temperature gradients on both sides of the fluid/porous-layer interface 
to  be more similar when compared to the experiments with the aluminium beads. 
Also, note that a thermal boundary layer exists on the fluid side of the fluid/porous- 
layer interface in all experiments of configuration 3, except in the case of the large 
glass beads, where the (small amount of) fluid penetrating into thc porous layer 
prevents the thermal boundary layer from being formed. 

5.  Conclusions 
A fundamental study has been performed of natural convection in a vertical 

enclosure containing simultaneously fluid and porous layers. In the analytical part 
of the study, a model is developed which treats the fluid and porous rcgions as a 
single domain. Mathematically, this is achieved by assuming continuity of the 
velocities, stresses, temperatures and heat fluxes a t  the fluid/porous-medium 
interface and combining the governing equations for the fluid and porous regions into 
a single set of conservation equations valid for the entire domain. This method 
results in considerable simplifications in the numerical solution proccdurc, since thc 
matching conditions at the fluid/porous-medium interface are satisfied auto- 
matically. The model is successfully validated through temperature mcasuremcmts 
and interferometric results obtained for three configurations of the porous la.ycr and 
wide ranges of the governing dimensionless parameters. A discussion of the 
experimental uncertainties and the deficiencies in the present model (as evident from 
the comparison of the experimental and predicted rcsults) is presented i n  $4.1. From 
an examination of the physical phenomena occurring in the experiments, thc 
following major conclusions can be drawn. 

(i) The intensity of natural convection is always much stronger in the fluid regions 
than in the porous medium. The degree of penetration of fluid into the porous layer 
increases with increasing permeability (i.e. Darcy number) as well as with increasing 
Rayleigh number. 

(ii) If penetration takes place, the fluid flow patterns in the fluid layrr are 
significantly altered when compared to  natural convection in an enclosure of the 
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same aspect ratio as the fluid layer. The streamlines show sharp cusps at  the fluid/ 
porous-medium intesfaces. 

(iii) A high effective thermal conductivity suppresses natural-convection flow in 
the porous medium because heat is transferred more effectively by conduction. In  
this case, the temperature drop across the (vertical) porous layer is relatively small: 
while the fluid layer represents the major thermal resistance to heat transfer. 

(iv) For a high thermal-conductivity ratio R, the isotherms show large 
discontinuities in slope a t  the fluid/porous-medium interface. On the other hand, a 
thermal-conductivity ratio close to unity causes strong coupling between the 
isotherm patterns in the fluid and the porous layers. 

(v) In  the case of a horizontal porous layer extending over the entire length of the 
enclosure, the extent of penetration of fluid into this porous layer is small when 
compared to a vertical porous layer of the same size and for the same values of the 
governing parameters, because the fluid can convect heat from the hot to the cold 
wall without having to flow through a porous medium. 

The work reported in this paper was supported, in part, by the National Science 
Foundation under Grant No. CBT-8313573. Computer facilities were made available 
by Purdue University Computer Centre. 
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